31 research outputs found

    Information recovery from rank-order encoded images

    Get PDF
    The work described in this paper is inspired by SpikeNET, a system developed to test the feasibility of using rank-order codes in modelling largescale networks of asynchronously spiking neurons. The rank-order code theory proposed by Thorpe concerns the encoding of information by a population of spiking neurons in the primate visual system. The theory proposes using the order of firing across a network of asynchronously firing spiking neurons as a neural code for information transmission. In this paper we aim to measure the perceptual similarity between the image input to a model retina, based on that originally designed and developed by VanRullen and Thorpe, and an image reconstructed from the rank-order encoding of the input image. We use an objective metric originally proposed by Petrovic to estimate perceptual edge preservation in image fusion which, after minor modifcations, is very much suited to our purpose. The results show that typically 75% of the edge information of the input stimulus is retained in the reconstructed image, and we show how the available information increases with successive spikes in the rank-order code

    Information recovery from rank-order encoded images

    Get PDF
    The time to detection of a visual stimulus by the primate eye is recorded at 100 ā€“ 150ms. This near instantaneous recognition is in spite of the considerable processing required by the several stages of the visual pathway to recognise and react to a visual scene. How this is achieved is still a matter of speculation. Rank-order codes have been proposed as a means of encoding by the primate eye in the rapid transmission of the initial burst of information from the sensory neurons to the brain. We study the efficiency of rank-order codes in encoding perceptually-important information in an image. VanRullen and Thorpe built a model of the ganglion cell layers of the retina to simulate and study the viability of rank-order as a means of encoding by retinal neurons. We validate their model and quantify the information retrieved from rank-order encoded images in terms of the visually-important information recovered. Towards this goal, we apply the ā€˜perceptual information preservation algorithmā€™, proposed by Petrovic and Xydeas after slight modification. We observe a low information recovery due to losses suffered during the rank-order encoding and decoding processes. We propose to minimise these losses to recover maximum information in minimum time from rank-order encoded images. We first maximise information recovery by using the pseudo-inverse of the filter-bank matrix to minimise losses during rankorder decoding. We then apply the biological principle of lateral inhibition to minimise losses during rank-order encoding. In doing so, we propose the Filteroverlap Correction algorithm. To test the perfomance of rank-order codes in a biologically realistic model, we design and simulate a model of the foveal-pit ganglion cells of the retina keeping close to biological parameters. We use this as a rank-order encoder and analyse its performance relative to VanRullen and Thorpeā€™s retinal model

    Implementing the cellular mechanisms of synaptic transmission in a neural mass model of the thalamocortical circuitry

    Get PDF
    A novel direction to existing neural mass modeling technique is proposed where the commonly used ā€œalpha functionā€ for representing synaptic transmission is replaced by a kinetic framework of neurotransmitter and receptor dynamics. The aim is to underpin neuro-transmission dynamics associated with abnormal brain rhythms commonly observed in neurological and psychiatric disorders. An existing thalamocortical neural mass model is modified by using the kinetic Q1 framework for modeling synaptic transmission mediated by glutamatergic and GABA (gamma-aminobutyric-acid)-ergic receptors. The model output is compared qualitatively with existing literature on in vitro experimental studies of ferret thalamic slices, as well as on single-neuron-level model based studies of neuro-receptor and transmitter dynamics in the thalamocortical tissue. The results are consistent with these studies: the activation of ligand-gated GABA receptors is essential for generation of spindle waves in the model, while blocking this pathway leads to low-frequency synchronized oscillations such as observed in slow-wave sleep; the frequency of spindle oscillations increase with increased levels of post-synaptic membrane conductance for AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid) receptors, and blocking this pathway effects a quiescent model output. In terms of computational efficiency, the simulation time is improved by a factor of 10 compared to a similar neural mass model based on alpha functions. This implies a dramatic improvement in computational resources for large-scale network simulation using this model. Thus, the model provides a platform for correlating high-level brain oscillatory activity with low-level synaptic attributes, and makes a significant contribution toward advancements in current neural mass modeling paradigm as a potential computational tool to better the understanding of brain oscillations in sickness and in health

    Combined study of time-series bifurcation and power spectral behaviour of a thalamo-cortico- thalamic neural mass model

    Get PDF
    A combined power spectral and time-series bifurcation analysis of a neural mass model is presented. Such 'multimodal' analytical techniques are being used in several researches to understand Electroencephalograph (EEG) anomalies in brain disorder

    Assistive Chatbots for healthcare: a succinct review

    Full text link
    Artificial Intelligence (AI) for supporting healthcare services has never been more necessitated than by the recent global pandemic. Here, we review the state-of-the-art in AI-enabled Chatbots in healthcare proposed during the last 10 years (2013-2023). The focus on AI-enabled technology is because of its potential for enhancing the quality of human-machine interaction via Chatbots, reducing dependence on human-human interaction and saving man-hours. Our review indicates that there are a handful of (commercial) Chatbots that are being used for patient support, while there are others (non-commercial) that are in the clinical trial phases. However, there is a lack of trust on this technology regarding patient safety and data protection, as well as a lack of wider awareness on its benefits among the healthcare workers and professionals. Also, patients have expressed dissatisfaction with Natural Language Processing (NLP) skills of the Chatbots in comparison to humans. Notwithstanding the recent introduction of ChatGPT that has raised the bar for the NLP technology, this Chatbot cannot be trusted with patient safety and medical ethics without thorough and rigorous checks to serve in the `narrow' domain of assistive healthcare. Our review suggests that to enable deployment and integration of AI-enabled Chatbots in public health services, the need of the hour is: to build technology that is simple and safe to use; to build confidence on the technology among: (a) the medical community by focussed training and development; (b) the patients and wider community through outreach

    Combined study of time-series bifurcation and power spectral behaviour of a thalamo-cortico-thalamic neural mass model

    Get PDF
    A combined power spectral and time-series bifurcation analysis of a neural mass model is presented. Such 'multi-modal' analytical techniques are being used in several researches to understand Electroencephalograph (EEG) anomalies in brain disorders [1][2], in contrast to 'power spectra-only' analytical studies that were more common during the early days of EEG analysis. In a recent work, a combined analysis of a simple thalamo-cortical neural mass model in context to EEG abnormality in Alzheimer's disease (AD) is presented [3]. The study shows that 'unimodal' analytical techniques such as power spectra-only studies without a simultaneous observation of the time-series model output may lead to anomalous conclusions and hypotheses. Towards this, in this work, a 'multi-modal' analytical technique is applied on a thalamocorticothalamic (tct) model, which was earlier studied using power-spectra analysis only [4]. The tct model is an enhanced version of that used in [3] and is based on biological data available in current literature. Furthermore, it aims to mimic thalalmocortical oscillations such as observed in the EEG of both healthy and diseased brain. Here, the power spectra of the tct model output is observed within the Ī“ (1-3 Hz), Īø (4-7 Hz), Ī± (8-13 Hz), Ī² (14-30 Hz) bands, along with a simultaneous analysis of the time series behaviour, the latter showing three behavioural modes: noisy point-attractor, spindle and limit-cycle. With all parameters at their basal values, the output time series is in a noisy point-attractor mode with maximum power within the alpha band (Figure 1). However the model shifts into a limit cycle oscillatory mode with a decrease in inhibitory connectivity parameters in the model (Figure 1); the corresponding power spectra show an increase in peak power within the Īø and Ī“ bands along with a simultaneous decrease in power within the Ī± and Ī² bands. The model behaviour is very much in agreement with in-vitro studies [5] which report an increased theta band power and a simultaneous decreased alpha band power during transition from wakefulness to sleep. Furthermore, the in-vitro time-series are qualitatively very similar to those obtained using the model. Thus, the model indicates a decreased inhibitory activity to be the neural correlate of the transitive state between wakefulness and sleep. On the other hand, increased mean firing activity of the extrinsic model inputs pushes the model, first into a spindling mode, and then into a limit cycle mode. In this state, the power within the delta band shows a significant increase compared to those within the other frequency bands. This behaviour is more similar to in-vivo studies of awake-to-sleep transition as reported in [5]

    Introduction to special issue on ā€˜Recent computing paradigms, network protocols, and applicationsā€™

    Get PDF
    This special issue of Innovations in Systems and Software Engineering: A NASA Journal is devoted to selected contributions from the 3rd International Conference on Advanced Computing, Networking and Informatics (ICACNI-2015), organized by School of Computer Engineering, KIIT University, Odisha, India, during 23ā€“25 June, 2015. The conference commenced with a keynote by Prof. Nikhil R. Pal (Fellow IEEE, Vice President for Publications IEEE Computational Intelligence Society (2015ā€“2016), Indian Statistical Institute, Kolkata, India) on ā€˜A Fuzzy Rule-Based Approach to Single Frame Super Resolutionā€™. Apart from three regular tracks on advanced computing, networking, and informatics, the conference hosted three invited special sessions. While a total of 558 articles across different tracks of the conference were received, 132 articles are finally selected for presentation and publication by Smart Innovation, Systems and Technologies series of Springer as Volume 43 and 44. The conference showcased a technical talk by Prof. Nabendu Chaki (Senior Member IEEE, Calcutta University, India) on ā€˜Evolution from Web-based Applications to Cloud Services: A Case Study with Remote Healthcareā€™. The conference identified some wonderful works and has given away eight awards in different categories

    Studying the effects of thalamic interneurons in a thalamocortical neural mass model

    Get PDF
    Neural mass models of the thalamocortical circuitry are often used to mimic brain activity during sleep and wakefulness as observed in scalp electroencephalogram (EEG) signals [1]. It is understood that alpha rhythms (8-13 Hz) dominate the EEG power-spectra in the resting-state [2] as well as the period immediately before sleep [3]. Literature review shows that the thalamic interneurons (IN) are often ignored in thalamocortical population models; the emphasis is on the connections between the thalamo cortical relay (TCR) and the thalamic reticular nucleus (TRN). In this work, we look into the effects of the IN cell population on the behaviour of an existing thalamocortical model containing the TCR and TRN cell populations [4]. A schematic of the extended model used in this work is shown in Fig.1. The model equations are solved in Matlab using the Runge-Kutta method of the 4th/5th order. The model shows high sensitivity to the forward and reverse rates of reactions during synaptic transmission as well as on the membrane conductance of the cell populations. The input to the model is a white noise signal simulating conditions of resting state with eyes closed, a condition well known to be associated with dominant alpha band oscillations in EEG e.g. [5]. Thus, the model parameters are calibrated to obtain a set of basal parameter values when the model oscillates with a dominant frequency within the alpha band. The time series plots and the power spectra of the model output are compared with those when the IN cell population is disconnected from the circuit (by setting the inhibitory connectivity parameter from the IN to the TCR to zero). We observe (Fig. 2 inset) a significant difference in time series output of the TRN cell population with and without the IN cell population in the model; this in spite of the IN having no direct connectivity to and from the TRN cell population (Fig. 1). A comparison of the power spectra behaviour of the model output within the delta (1-3.5Hz), theta (3.75-7.5Hz), alpha (7.75-13.5Hz) and beta (13.75-30.5Hz) bands is shown in Fig. 2. Disconnecting the IN cell population shows a significant drop in the alpha band power and the dominant frequency of oscillation now lies within the theta band. An overall ā€˜slowingā€™ (left-side shift) of the power spectra is observed with an increase within the delta and theta bands and a decrease in the alpha and beta bands. Such a slowing of EEG is a signature of slow wave sleep in healthy individuals, and this suggests that the IN cell population may be centrally involved in the phase transition to slow wave sleep [6]. It is also characteristic of the waking EEG in Alzheimerā€™s disease, and may help us to understand the role of the IN cell population in modulating TCR and TRN cell behaviour in pathological brain conditions

    Causal role of thalamic interneurons in brain state transitions: a study using a neural mass model implementing synaptic kinetics

    Get PDF
    Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20ā€“25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8ā€“13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive decrease of neurotransmitter concentrations in the synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the model. The results imply a role of IN toward maintaining homeostasis in the LGN by suppressing any instability that may arise due to anomalous synaptic attributes
    corecore